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I. INTRODUCTION

Let K be a nonempty subset in a (real) Banach space X. For each x E X,
we say that y E K is a best approximation to x from Kif

II x - y II = inf{11 x - z II: Z E K}.

The set K is called proximinal (Chebyshev) if every point x E X has a (unique)
best approximation from K. It is easy to see that every closed convex set
K in a reflexive space X is proximinal. In addition, if the norm is strictly
convex, then K is Chebyshev. However, if X is not assumed reflexive or K
is not assumed convex, then the above result is false in general. In
[7], Steckin introduced the concept of almost Chebyshev. A set K is called
almost Chebyshev if the set of x in X such that K fails to have unique best
approximation to x is a first category subset of X. He proved that if X is
a uniformly convex Banach space, then every closed subset is almost
Chebyshev. By using this concept, Garkavi [4] showed that for any reflexive
subspace F in a separable Banach space, there exists a (in fact, many) sub­
space G which is B-isomorphic to F and is almost Chebyshev. The author
[6] showed that if X is a separable Banach space which is locally uniformly
convex or possesses the Radon-Nikodym property, then "almost all"
closed subspaces are almost Chebyshev. In [3], Edelstein proved that if X
has the Radon-Nikodym property, then for any bounded closed convex
subset K, the set of x in X which admit best approximations from K is a
weakly dense subset in X.

In this paper, we generalize Steckin's result to a wider class of Banach
spaces. A Banach space is called a U-space if for any 10 > 0, there exists
o > °such that for any x, y E X with II x I! = II y II = 1 and II(x + y)/21 1 >
I - 0, II(x* + y*)/211 > I - 10, where x* and y* are norm 1 support
functionals of the closed unit ball of X at x, y, respectively. We show that
this class of spaces is self-dual, it contains all uniformly convex spaces,
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uniformly Frechet differentiable spaces and is contained in the class of
uniformly nonsquare Banach spaces. Our main result is: Every closed subset
in a locally uniformly convex U-space is almost Chebyshev.

In Section 2, we obtain some basic properties of the U-spaces. We prove
the main results in Section 3.

2. U-SPACES

Throughout, we will use the following notation:

X real Banach spaces.

x* dual of the Banach space X.

B(x, r) the set of points whose distance to x is less than or equal to r.

Br B(x, r) with x = 0.

8 r the set of points with norm equal to r.

V'x the set of norm 1 support functionals of 811xll at x.

For each x E 81 , x* E V'x , and for 1 > r > 0, 8 > 0, we let

Nr(x, D) = B1\B(-rx, 1 + r - D),

Mr(x, D) = B(rx, I - r + D)\B1 ,

d(x*, NrCx, D)) = sup{1 - x*(y): y E NrCx, D)},

d(x*, Mr(x, D)) = sup{l + D - x*(y): y E MrCx, S)}.

The following proposition is the motivation of the definition of U-spaces
and its geometric characterization will be used in the next section (Lemma 3.1,
Proposition 3.2).

PROPOSITION 2.1. Let X be a Banach space, let x E 81 and let x* E V'x •

Then the following conditions are equivalent:

(i) For any I' > 0, there exists D > 0 (depends on x, x*, E) such that
for any y E81 with II(x + y)j211 > 1 - D, x*(y) > 1 - E.

(ii) lim6~0 d(x*, Nr(x, D)) = 0 for any 1 > r > O.

(iii) lim6~0 d(x*, Mr(x, D)) = 0 for any 1 > r > O.

Proof The equivalence of (ii), (iii) follows from the fact that NrCx, D)
is a homothetic translation of Mr(x, 8) and vice versa. To prove (i) implies
(ii), suppose there exists 1 > r > 0 such that

lim d(x*, Nix, D)) > 21'6..,0 for some I' > O.
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Let 00 > °be a number satisfying
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II(x + Y)/211 > 1 - 00 , yESI => X*(y) > 1 - E. (*)

For 0 = min{roo/2, E/2}, choose Y E Nlx, 0) such that 1 - x*(y) > 2E,
i.e., x*(y) < 1 - 2E. Note that II y + rx II ~ 1 + r - 0, hence II y II ~ 1 - 0;
also note that II y [I ~ 1. Let Yo = YIII Y II, then II Y - Yo II < 20 and

x*(Yo) < 1 - 2E + 20 ~ I - 2E + E = 1 - E.

It follows from (*) that

II(x + Yo)/211 ~ 1 - 00 .

Thus

II Y + rx II ~ II Y - Yo II + [I r(yo + x) - (1 - r) Yo II
:(; 20 + 2r(1 - ( 0) + (1 - r)

< 1 + r - o.
This contradicts that y is in Nlx, 0).

To prove the sufficiency, suppose that (i) were not true, we can find E > °
such that for any 0 > 0, there exists y ESI with

II(x + y)/211 > 1 - 0, but x*(y) ~ 1 - E. (**)

By (ii), there exists 00 such that d(x*, Nr(x, 0c)) < E. Consider 0 = (jo/2,
there exists y E SI satisfies (**), hence y rf= Nlx, (jo) and II y + rx II < 1 -+
r - (jo' Now,

1 - r 1 + r - 00
<-2-+ 2

~ 1 - ~o = 1 - o.

This contradicts the choice of y.

DEFINITION 2.2. A Banach space X is called a U-space if for any EO > 0,
there exists 0 > °such that for any x, y E SI with lI(x + y)/2!1 > 1 - 0,
x*(y) > 1 - E for any x* E Vx'

It is clear that in the above definition we can assume x, y E HI instead of
x, y E SI . It also follows easily from the definition that X is a U-space if and
only if for any E > 0, there exists °> °such that for any x, y E 81 with
I[(x + y)/211 > 1 - 0, II(x* + y*)/211 > 1 - E for all x* E Vx , y* E V y •



32 KA-SING LAD

In the rest of this section, we will give some classification of the U-spaces.
A Banach space is called uniformly nonsquare [2, 5] if there exists°< a < 1.
satisfies for any x, y in B1 , either II(x + y)j211 :::::;; a or II(x - y)j211 :::::;; a,
Following directly from the definitions, we can show that every U-space
is uniformly nonsquare. Also, it is easy to see that a uniformly nonsquare
space is not necessarily a U-space. (The two-dimensional Banach space with
the norm generated by a hexagon will be an example.) In [5], it is proved that
every uniformly nonsquare space is reflexive. Hence, we have

COROLLARY 2.3. Every U-space is reflexive.

THEOREM 2.4. Let X be a Banach space, then X is a U-space if and only
if X* is aU-space.

Proof By the above, it suffices to show that x* is a U-space implies X
is a U-space. For any E > 0, let°> °be a number satisfies

II
x* + y* II -2 > 1 0, x*,y* ES1* ~ x*(y) > 1 - E, YEV'lI*' (*)

Let x, y E Sl satisfy II(x + y)/211 > 1 - 0. For z* E V'(",+Y)/2 ,z*((x + y)j2) >
1 - 0, hence

z*(x) > 1 - 20,

It follows that

(
z* + x* )2 (x) > 1 - 0,

z*(y) > 1 - 20.

* + *(Z 2 Y ) (y) > 1 - °
and

II z* + x* II~ 2 > I - 0,

Choose z E V'z* ; by (*), we have

z* + y*
2 II> 1 - o.

x*(z) > 1 - E, y*(z) > 1 - E.

This implies II(x* + y*)/211 > 1 - E and completes the proof.
A Banach space is called locally uniformly convex if for any x E Sl and

for any E > 0, there exists 0 > °(depends on E, x) such that for any y ESl
with II x - y II > E, II(x + y)j211 > 1 - o. It is called uniformly convex
if the 0 above can be chosen independent of x E Sl . A Banach space is called
uniformly Frechet differentiable if limll-+o 01 x + y II - II x IDjl1 y II exists for
all x E Sl and the limit is independent of x. It is well known [2] that X is
uniformly convex if and only if X* is uniformly Frechet differentiable.
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COROLLARY 2.5. Uniformly convex spaces and uniformly Frechet differen­
tiable spaces are U-spaces.

3. BEST ApPROXIMATION

Let K be a closed subset in a Banach space X, we define the distance
function from x to K as

rex) = inf{11 x - z II: z EO K}.

It is clear that I rex) - r(y)1 ~ II x - y II for all x, y EO X. For 8 > 0, we let

Klx) = B(x, rex) + 8) n K,

Ki(x) = {z*: z* EO Vz- x , dist(z, Ka(x)) < 8},

dlx) = sup{z*(Yr - Y2): Yr ,Y2 EO Ka(x), z* EO Ki(x)},

and

We remark that Ka(x), Ki(x) are decreasing as 8 ---+ 0, hence da(x) is
decreasing and the limit exists.

Let X be a U-space, it is clear that the two limits lim a~o d(x*, Nr(x, 8))
and lima~o d(x*, Mr(x, 8)) in Proposition 2.1 converge to °uniformly for
x EO 81 and x* EO Vx' In the following, we need a slightly stronger result.

LEMMA 3.1. Let X be a U-space. Then for E > 0, 1 > r > 0, there
exists 8 > °satisfies

for all Y1' Y2' Z EO Mr(x, 8), z* EO Vz- rx , X EO 81 ,

Proof. Note that Mr(x, 8) and Nr(x, 8) are homothetic translations of
each other, it will be more convenient to prove: for any E > 0, there exists
8 > °such that for all Y1 , Y2 , Z EO Nr(x, 0), z* EO Vz , X EO 81 ,

Since X is a U-space, we can find 01 > °such that
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As limB~o d(x*, Nlx, 0)) = 0 uniformly for x E 81 , x* E V'x, there exists
o< 01 (independent of x E 81 , x* E V'x) such that for Y E Nr(x, 0), x*(y) >
1 - 01 . Hence for Y1 , Y2 , Z E Nr(x, 0), we have

This implies

x*«z + Yi)/2) > 1 - 01,

II(z + Yi)/2 II > 1 - 01 ,

i = 1,2.

i = 1,2.

By (*), Z*(Yi) > 1 - (E/2), for z* E V'z, i = 1,2, hence I Z*(Y1 - Y2)1 < E.

PROPOSITION 3.2. Let X be a U-space and let K be a closed subset in X,
then the set {x: d(x) = O} is a dense GBin X.

Proof We will show that for each n, the set Fn = {x: d(x) ?' (lIn)} is
closed and contains no interior. The Baire theorem will imply that U:~l Fn

is a nowhere dense set and hence {x: d(x) = O} is a dense GB.
To show thatFn is closed, let Xo1: Fn • Without loss ofgenerality, we assume

that X o = O. There exist 00 > 0, such that

Z*(YI - Y2) < (lin)

Choose 01 = (00/3), for II x II < 01 , we have

(ii) z* E K~(x) =? z* E V'z-x, where dist(z, KBix)) < 01 ,

=? z* E V'z-x , where dist(z - X, KBO<0)) < 00 ,

=? z* E K*(O)
Bo '

i.e., KB~(X) ~ KB~(O).

It follows that for II x I: < 01 , we have

Z*(YI - Y2) < (lIn)

hence dB1(X) < lin and BB1n Fn = 0. This completes the proof that Fn

is closed.
Assume that Fn had nonvoid interior. Without loss of generality, let

Br ~ Fno (l > r > 0) and reO) = 1. By Lemma 3.1, there exists 0 > 0
satisfies

(*)

Let 00 = 013, choose X o E B1+B n K. Let Xl = xo/ll Xo II, X r = rxo . Theno
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and for z such that dist(z, Ka(xr)) < 00 , let z' = AZ + (I - A) X r with
o

A > 0 and II z' II = I. It is easy to show that

z' E Mr(x1 , 3(0) = MrCx1 , 0).

Thus (*) implies

i.e., d(x r ) < lin. This contradicts that XI' EFn O.

DEFINITION 3.3. A subset K in a Banach space is called almost Chebyshev
if the set of X E X which fails to have unique best approximation from K
to x is a first category subset of X.

Recall that a 10caIly uniformly convex space has the following property:
If X n ---+/C x and II X n !I ---+ II x II, then X n ---+11'11 X.

THEOREM 3.4. Let X be a locally uniformly convex U-space, every closed
subset in X is almost Chebyshev.

Proof By Proposition 3.2, we know that the set G = {x: d(x) = O}
is a dense Ga. Let x E G, choose Yn E B(x, rex) + (lIn)) n K. Without loss
of generality, by the reflexivity of X, we may assume that {Yn} converges to
y weakly. Since d(x) = °and limm~oo y~ (Ym - x) = y;, (y - x), y~ EVy -x,
we can show that for any E > 0, Y E{z: y~(z - x) ;? rex) - E} for so~e n.
This implies II Y - x II = rex) and llYn - X 11---+ Y - x II. Since X is locally
uniformly convex, by the above remark, Yn ---+11'11 x. That K is closed implies
yE K and

II x - Y II = rex) = inftll x - z II: Z E K).

Hence, every point x EGis a best approximation from K. It is proved in [7]
that under the same assumption, the set in X which has not more than one
best approximation from K is also a dense Ga . Together with what we proved
above, we conclude that K is almost Chebyshev.

Remarks. (I) By a renorming theorem of Asplund [I], we can construct
a locally uniformly convex, uniformly Frechet differentiable space which is
not uniformly convex; hence, Theorem 3.5 generalizes the result of Steckin.

(2) We do not know whether Theorem 3.4 will hold for reflexive
locally uniformly convex spaces. It is interesting to know whether similar
result holds for U-spaces (In this case, we have to give up the requirement of
uniqueness in the definition of almost Chebyshev subsets).

(3) Edelstein [3] gave an example that the above theorem may not
hold in separable, strictly convex reflexive Banach spaces.
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Note added in proof Recently the author proved that Theorem 3.4 holds for reflexive
locally uniformly convex spaces.
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